statins

You are currently browsing articles tagged statins.

pregnant womanBack in July I posted an article called Statins For Pregnant Women and Kids? criticizing a research study that actually recommended statins for pregnant women.

Well, it appears that even mainstream scientists are beginning to acknowledge the very real risks that statins present for pregnant mothers and fetuses.

Current clinical guidelines already recommend that women who are pregnant should stop taking statins but the advice is based on the knowledge that cholesterol is essential for normal fetal development.

But new research from The University of Manchester has shown that even water-soluble or ‘hydrophilic’ statins, such as pravastatin, can affect placental development leading to worse pregnancy outcomes.

According to Dr. Melissa Westwood, a Senior Lecturer in Endocrinology based at the Maternal and Fetal Health Research Centre at St. Mary’s Hospital, Manchester:

“Our study examined the effects that both lipophilic and hydrophilic statins had on a key biological system that is crucial for maintaining the normal function of the placenta, which acts as the nutrient-waste exchange barrier between mother and fetus.”

Fat-soluble statins like cerivastatin were already known to adversely affect the placenta, resulting in reducing growth. But the researchers also found that pravastatin – the water-soluble statin thought to be potentially compatible for use in pregnancy – had the same detrimental effect.

“These results clearly show that the effect of statins on the placenta is not dependent on their lipophilicity as had previously been suggested,” said Dr Westwood, whose findings are published in the Journal of Cellular and Molecular Medicine.

“While hydrophilic statins have not been reported to increase the incidence of fetal malformations, our research suggests that they will have a detrimental effect on placental growth, which is likely to result in poor pregnancy outcome.

“Healthcare professionals should continue to advise women to avoid the use of any type of statin once they plan to start a family or when a pregnancy is suspected or confirmed.

mouth full of pillsIf you read the papers or watch the news you’ve probably heard about the recently published JUPITER study, advertised with bold headlines such as “Cholesterol drug causes risk of heart attack to plummet” and “Cholesterol-fighting drug shows wider benefit”. If you’ve been following this blog (and perhaps even if you haven’t), you are by now aware that such claims cannot be taken at face value.

You might suspect, for example, that the study was sponsored by a drug company and authored by researchers with financial interests tied to those drug companies. You might wonder if these associations could possibly – just possibly – influence not only the results of the study, but how those results are reported. You might also find yourself questioning the objectivity of a study with the title “Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin” (JUPITER).

If you’re asking yourself these questions, you are definitely on the right track. The study was indeed sponsored by a drug company, AstraZeneca. And each author of this study received money in the form of grants, consulting fees and honoraria from pharmaceutical companies – in some cases up to twelve different companies, including AstraZeneca, the study sponsor. Take a look at this list detailing the financial interests of the study authors (now required by the New England Journal of Medicine and other prominent publications):

Dr. Ridker reports receiving grant support from AstraZeneca, Novartis, Merck, Abbott, Roche, and Sanofi-Aventis; consulting fees or lecture fees or both from AstraZeneca, Novartis, Merck, Merck–Schering-Plough, Sanofi-Aventis, Isis, Dade Behring, and Vascular Biogenics; and is listed as a coinventor on patents held by Brigham and Women’s Hospital that relate to the use of inflammatory biomarkers in cardiovascular disease, including the use of high-sensitivity C-reactive protein in the evaluation of patients’ risk of cardiovascular disease. These patents have been licensed to Dade Behring and AstraZeneca. Dr. Fonseca reports receiving research grants, lecture fees, and consulting fees from AstraZeneca, Pfizer, Schering-Plough, Sanofi-Aventis, and Merck; and Dr. Genest, lecture fees from AstraZeneca, Schering-Plough, Merck–Schering-Plough, Pfizer, Novartis, and Sanofi-Aventis and consulting fees from AstraZeneca, Merck, Merck Frosst, Schering-Plough, Pfizer, Novartis, Resverlogix, and Sanofi-Aventis. Dr. Gotto reports receiving consulting fees from Dupont, Novartis, Aegerion, Arisaph, Kowa, Merck, Merck–Schering-Plough, Pfizer, Genentech, Martek, and Reliant; serving as an expert witness; and receiving publication royalties. Dr. Kastelein reports receiving grant support from AstraZeneca, Pfizer, Roche, Novartis, Merck, Merck–Schering-Plough, Isis, Genzyme, and Sanofi-Aventis; lecture fees from AstraZeneca, GlaxoSmithKline, Pfizer, Novartis, Merck–Schering-Plough, Roche, Isis, and Boehringer Ingelheim; and consulting fees from AstraZeneca, Abbott, Pfizer, Isis, Genzyme, Roche, Novartis, Merck, Merck–Schering-Plough, and Sanofi-Aventis. Dr. Koenig reports receiving grant support from AstraZeneca, Roche, Anthera, Dade Behring and GlaxoSmithKline; lecture fees from AstraZeneca, Pfizer, Novartis, GlaxoSmithKline, DiaDexus, Roche, and Boehringer Ingelheim; and consulting fees from GlaxoSmithKline, Medlogix, Anthera, and Roche. Dr. Libby reports receiving lecture fees from Pfizer and lecture or consulting fees from AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Merck, Pfizer, Sanofi-Aventis, VIA Pharmaceuticals, Interleukin Genetics, Kowa Research Institute, Novartis, and Merck–Schering-Plough. Dr. Lorenzatti reports receiving grant support, lecture fees, and consulting fees from AstraZeneca, Takeda, and Novartis; Dr. Nordestgaard, lecture fees from AstraZeneca, Sanofi-Aventis, Pfizer, Boehringer Ingelheim, and Merck and consulting fees from AstraZeneca and BG Medicine; Dr. Shepherd, lecture fees from AstraZeneca, Pfizer, and Merck and consulting fees from AstraZeneca, Merck, Roche, GlaxoSmithKline, Pfizer, Nicox, and Oxford Biosciences; and Dr. Glynn, grant support from AstraZeneca and Bristol-Myers Squibb. No other potential conflict of interest relevant to this article was reported.

Now, the fact that these researchers receive money from all of these drug companies doesn’t mean that they are dishonest or that their data are invalid. However, if you think these conflicts of interest do not influence the outcomes of clinical research, then I suggest you read an article I published a few months ago called When It Comes To Drug Claims, Skepticism Is Healthy.

Now that you’ve put on your “Healthy Skeptic” goggles, we can move on and more closely examine the study itself. There are several things you need to be aware of as we discuss it.

First, although the press articles claim that the study looked at statin use in healthy populations, the subjects were people who had normal cholesterol but high CRP levels. CRP, or C-Reactive Protein, is a measure of inflammation in the body. It is now widely accepted even in the mainstream medical community that inflammation is a major risk factor for heart disease. And because inflammation is a sign of an underlying disease process, these patients were not, in fact, “healthy” as claimed.

There is little doubt that statins reduce inflammation, which can help prevent atherosclerosis. It appears that the benefits of statins are mainly due to this characteristic, rather than to their cholesterol-lowering effects. So it’s no surprise that the statins reduced rates of heart disease and mortality in this population that had inflammation going into the study.

I should also mention, however, that the predictive value of CRP for heart disease is highly controversial. Though some studies show a correlation between high CRP levels and heart disease, many others do not. Many physicians feel that CRP is not a useful indicator in clinical practice.

The second thing you need to be aware of is the difference between relative and absolute risk reduction. Relative risk reduction (RRR) measures how much the risk is reduced in the experimental group compared to a control group. Absolute risk reduction (ARR) is just the absolute difference in outcome rates between the control and treatment groups.

To make this more clear, let’s consider an example. Say that 2000 people enter a study for a particular drug and 1000 of them are randomized to placebo. At the end of the study, one person in the drug group died versus two people in the placebo group. The relative risk reduction of the drug group would thus be 50% (0.002 – 0.001/0.002). That sounds really impressive! The headline for this study might read “New drug reduces chance of dying by 50%!”. While technically true, you can see how misleading this can be. Why? Because when most people read that headline, they will interpret it to mean that if they take that drug, their risk of dying will be reduced by 50%, which is not even close to being true.

The absolute risk reduction, on the other hand, is always a much more modest number. Using the same example above, the absolute risk reduction in the drug group would have been a paltry one-tenth of a percent, or 0.1% (0.002 – 0.001). That’s not a very catchy headline, is it? “New drug reduces risk of dying by one-tenth of a percent”. It just doesn’t grab you the same way. But this is actually a more realistic view of what happened in the study and what we could expect to happen in the real world.

In fact, one could just as accurately say that in this hypothetical study, a patient has a 1-in-1000 (0.1%) chance of their life being saved by the drug. Said another way, 1,000 patients would have to be treated with this drug in order to save a single life. This measurement is called the Needed Number to Treat, and is another means for interpreting the results of clinical trials.

With that in mind, let’s examine the data from the JUPITER study. The actual numbers were 198 deaths out of 8901 in the statin group and 247 deaths out of 8901 in the placebo group. The relative risk reduction for total mortality (deaths) in the drug group was 19.8% [(247/8901 - 198/8901) / (247/8901)]. That means that the risk of death for people taking Crestor was 19.8% smaller than those taking placebo.

But what happens when we look at the absolute risk reduction numbers? According to the data, 2.77% (0.02774) of people taking the placebo died after two years versus 2.24% (0.02224) of people taking Crestor. This amounts to a difference of 0.55%, or one-half of one percent.

Here’s a graphical illustration of the difference in mortality between the Crestor and placebo group:

jupiter graph

If you’re having trouble making much of a difference, I don’t blame you!

To make this even more clear, let’s use the Needed Number to Treat method of evaluating these results. According to the study data, 182 people would have to be treated with Crestor for two years in order to save a single life.

Now that may not sound like a large number to you, especially if yours was one of the lives saved. However, when evaluating the viability of any potential treatment three considerations (above and beyond the efficacy of the treatment) must be taken into account: cost, side effects, and alternatives.

Let’s look at cost first. The cost of one patient taking Crestor for one year is approximately $1,300. Therefore, to prevent 49 deaths 8,901 people would have to take Crestor for two years at a cost of $23 million dollars. That is an enormously expensive treatment by any measure.

Second, this particular study did not register significant side effects in the statin group. This is very fishy, though, since nearly every other study on statins to date has shown significant side effects and the approval of Crestor itself was delayed by the FDA due to concern about Crestor side effects.

While all statins are associated with rare instances of rhabdomyolysis, a breakdown of muscle cells, Crestor had shown in studies before its approval that the potentially deadly disease had surfaced in seven people. Crestor’s potential muscle- and liver-damaging side effects become more worrisome and difficult to justify in patients who are essentially healthy.

What’s more, the study only lasted two years. That’s not long enough to adequately establish safety for the drug, especially if people are going to use it “preventatively”, which means they could be taking it for several years and even decades. Statins have caused cancer in every single animal study to date. Since cancer can take up to 25 years to develop after initial exposure to the carcinogen, we simply cannot know at this point that statins won’t also significantly increase the risk of cancer in adults.

Finally, before jumping on the statin bandwagon and recommending that we spend billions of dollars treating healthy people with Crestor, we should consider if there isn’t a less costly and risky way of preventing deaths due to inflammation and heart disease.

Wouldn’t you know it, there sure is!

For the last decade medical research has increasingly demonstrated that heart disease is caused not by high cholesterol levels, but by inflammation and oxidative damage. A full explanation of these mechanisms is beyond the scope of this post, but for more details you can read two previous articles: Cholesterol Doesn’t Cause Heart Disease and How To Increase Your Risk of Heart Disease.

So, if we want to prevent and even treat heart disease, we need to address the causes of inflammation and oxidative damage. Again, there’s not room to go into great detail on this here but in general the primary causes of inflammation and oxidative damage are 1) a diet high in polyunsaturated oil (PUFA) and refined flour and sugar, 2) lack of physical activity, 3) stress and 4) smoking.

We can thus prevent heart disease by avoiding PUFA and refined/processed food, getting adequate exercise, reducing stress and not smoking. These simple dietary and lifestyle changes are likely to produce even better results than a statin, for a fraction of the cost and without any side effects. In fact, the only side effects of this approach are improved physiological and psychological health! For more specific recommendations, read my article Preventing Heart Disease Without Drugs.

Taking a statin to “prevent” inflammation and heart disease is rather like bailing water with a pail to prevent a boat from sinking instead of simply plugging the leak. Unfortunately, our entire health care system is oriented around “bailing water with a pail”, which is to say treating the symptoms of disease, instead of “plugging the leak”, or addressing the causes of disease before it develops. The reason this is the case is because there’s a lot more money to be made from drugs, surgery and other costly interventions than there is from encouraging people to eat well, exercise and reduce stress.

Even if we ignore all of the issues I’ve pointed out above, the best thing we can say about this study is that a small group of unusual patients – those with low LDL-cholesterol AND high C-reactive protein – may slightly decrease their risk for all-cause mortality by taking a drug that costs them almost $1,300 per year and slightly increases their risk for developing diabetes.

That’s the best spin possible given the data from this study. Compare that to the mainstream media headlines, and you’ll have a clear understanding of how financial conflicts of interest are seriously damaging the integrity and value of clinical research.

At least the media wasn’t completely fooled. They did manage to at least include the perspective of sane doctors who questioned the desirability of millions of relatively healthy people taking drugs for the rest of their lives. According to the Wall Street Journal:

Moreover, despite large relative benefits, the actual number of patients helped was small. Those on the drug suffered 142 major cardiovascular events compared with 251 on placebo, a difference of 109. Dr. Hlatky said that raises questions about the cost-effectiveness of CRP screening and the value of putting millions of low-risk patients on medication for the rest of their lives.

From the New York Times:

Some consumer advocates and doctors raised concerns about the expense of putting relatively healthy patients on statins, which would cost the health system billions of dollars.

From Fox News:

About 120 people would have to take Crestor for two years to prevent a single heart attack, stroke or death, said Stanford University cardiologist Dr. Mark Hlatky. He wrote an editorial accompanying the study published online by the New England Journal of Medicine.

“Everybody likes the idea of prevention. We need to slow down and ask how many people are we going to be treating with drugs for the rest of their lives to prevent heart disease, versus a lot of other things we’re not doing” to improve health, Hlatky said.

If you know of someone who is considering a statin after reading about the JUPITER study, please do them a favor and send them a link to this article first. They should hear both sides of the story before making such a significant decision.

One of my favorite researchers, Chris Masterjohn, has just launched a new blog called “The Daily Lipid” where he writes about fats, cholesterol and health. Chris is pursuing a Ph.D. in Molecular and Cell Biology and is one of the most knowledgeable contemporary writers on cardiovascular health that I’m aware of. With his permission, I am cross-posting the first two articles on his blog – which you should definitely consider adding to your blogroll!

pregnant woman

Statins for pregnant women?

Statin manufacturers, the sycophantic researchers they pay, and the shameless hucksters who sell them are always up to no good, but their recent attempts to market them to pregnant women are simply horrifying.

According to a recent news article published in Mail online, researchers from liverpool believe that taking statins during pregnancy might help women avoid caesarean sections by promoting more robust uterine contraction. They hope to begin human trials in three to five years.

Somehow, the author of this article failed to react with the shock and horror appropriate to the situation — which should be the same shock and horror with which we would react to the suggestion that pregnant women should take thalidomide to avoid morning sickness.

Back in 2004, a report in the New England Journal of Medicine showed that the use of statins in the first trimester of pregnancy was associated with birth defects, especially severe central nervous system defects and limb deformities. In fact, 20 out of 52 women exposed to statins gave birth to offspring with such defects, which represents a birth defect rate of 38 percent, nearly 20 times the background rate of birth defects!

Even before this report was published, researchers already knew that statins caused birth defects in animal experiments, and the FDA already required the drugs to carry a label warning pregnant women to stay away from them. The article linked to above stated the following:

“FDA took this action because it was recognized that fetal cholesterol synthesis was essential for development, and because animals given statins during pregnancy had offspring with a variety of birth defects,” [one of the study's authors] said.

Less than a year later, Merck and Johnson & Johnson jointly asked the FDA for permission to market an over-the-counter statin. One of the concerns about the proposal was the risk to pregnant women. USA Today reported:

The FDA classifies Mevacor and other statins as pregnancy category X, which means they are not supposed to be taken by pregnant women. Not only have category X drugs been linked to fetal abnormalities in animal or human studies, but the FDA also has declared that the benefits of taking them do not outweigh potential risks.

According to the same article, Merck made a disturbing admission:

“Of course, there will be women who take it off-label,” acknowledges Merck executive Edwin Hemwall, referring to the use of non-prescription Mevacor by women under 55.

And what could prompt women to use statins during pregnancy against recommendations? Certainly a news article declaring that statins might prevent the need for caesarean sections and their associated complications could prompt some women to do so.

So what ground-breaking research made these Liverpool researchers so confident that taking drugs associated with twenty times the normal rate of major birth defects during pregnancy might be a good idea that they put out a press release declaring this confidence to the public before any trials were even under way?

Well, according to the article:

Tests have already shown that raising levels of cholesterol interferes with womb tissue’s ability to contract.
Really. Raising levels of cholesterol. You might wonder how they accomplished that. Did they use cholesterol-raising drugs? I don’t know of any drugs that do that. Did they use egg yolks, or the dreaded dietary villain — gasp — saturated fats?

No, the story is quite different.

The apparent basis for this ridiculous statin cheerleading is a 2004 study published by researchers from the University of Liverpool in the American Journal of Physiology — Cell Physiology entitled “Increased cholesterol decreases uterine activity: functional effects of cholesterol alteration in pregnant rat myometrium.”

Rather than feeding anything to pregnant women or pregnant rats, the researchers took pregnant rats and killed them. So the first thing we can say is that statins might help you deliver a baby if your doctor kills you first.

Then they extracted the uterine tissue and either extracted cholesterol from it with a chemical solvent called methyl beta-cyclodextrin, or enriched it either with cholesterol mixed with this solvent or with LDL (which they didn’t measure for oxidation prior to use). Then they added drugs to induce contraction under either cholesterol-depleted or cholesterol-enriched conditions, and found that contraction was greater under cholesterol-depleted conditions.

So now we know that — wait, what is it we know?

Well, quite clearly, we don’t know anything that we can have any confidence has any physiological relevance at all. That is, except the fact that statins cause birth defects in animals, and they increase the rate of birth defects in humans by nearly twenty times, primarily by causing severe defects of the central nervous system and limb deformities.

To add to that, we also know that the vast majority of humans conceived with Smith-Lemli-Opitz Syndrome (SLOS), a genetic inability to synthesize enough cholesterol, die of spontaneous abortion in the first 16 weeks of gestation. Those who live long enough to be born suffer from mental retardation, autism, facial and skeletal malformations, visual dysfunctions and failure to thrive.

Statins for pregnant women? I don’t think so.

Article written by Chris Masterjohn

Statins for 8-year old children?

child with drug

The American Academy of Pediatrics recently announced new recommendations for giving cholesterol-lowering drugs to children as young as eight years old. They also recommend giving low-fat milk to infants as young as one year old.

The New York Times published several articles on this, first announcing the recommendation the day the academy made it, then describing the backlash of saner doctors and other members of the public against it, and finally editorializing that while they were first “appalled” at the recommendation, after reading the report they were more dismayed at the state of our children’s health.

Concerning this frightful state of children’s health, the Times reported the following:

“We are in an epidemic,” said Dr. Jatinder Bhatia, a member of the academy’s nutrition committee who is a professor and chief of neonatology at the Medical College of Georgia in Augusta. “The risk of giving statins at a lower age is less than the benefit you’re going to get out of it.”

Dr. Bhatia said that although there was not “a whole lot” of data on pediatric use of cholesterol-lowering drugs, recent research showed that the drugs were generally safe for children.

An epidemic of what? High cholesterol? Not according to the academy’s report, which states that cholesterol levels in children declined between 1966 and 1994 and stayed the same between 1994 and 2000.

No, we are in an epidemic of obesity. As the Times reported:

But proponents say there is growing evidence that the first signs of heart disease show up in childhood, and with 30 percent of the nation’s children overweight or obese, many doctors fear that a rash of early heart attacks and diabetes is on the horizon as these children grow up.

Is there any evidence that statins lead to weight loss? If there is, I am not aware of it.

The point is immaterial, because the academy doesn’t claim to have any evidence for its position in the first place. For example, its report states the following:

Also, data supporting a particular level of childhood cholesterol that predicts risk of adult CVD do not exist, which makes the prospect of a firm evidence-based recommendation for cholesterol screening for children elusive.
And further down:

It is difficult to develop an evidence-based approach for the specific age at which pharmacologic treatment should be implemented. . . . It is not known whether there is an age at which development of the atherosclerotic process is accelerated.

In other words, they don’t know what level of cholesterol is risky and at what age it starts posing a risk, but they will nevertheless assume that there is some level that does start to pose a risk at some age and they will thus have to make a guess just what that level and what that age is.

The report discusses evidence that the “metabolic syndrome” and the “recent epidemic of childhood obesity” are tied to the risk of diabetes and heart disease and evidence that even modest weight loss at a level of five to seven percent is sufficient to prevent diabetes. Yet somehow instead of making a recommendation about how to more effectively lose weight the authors derive from this data a much less logical but much more profitable conclusion that 8-year-olds should be put on statins.

As to the recommendation to feed infants low-fat milk, the Times reported the following:

The academy also now recommends giving children low-fat milk after 12 months if a doctor is concerned about future weight problems. Although children need fat for brain development, the group says that because children often consume so much fat, low-fat milk is now appropriate.

This is rather remarkable, because the academy attributed the drop in childhood cholesterol levels to the successes of the anti-fat, anti-cholesterol campaign that began in the 1950s. But now children no longer need milkfat because they are getting plenty of fat. Well which is it? Are they getting more fat now or less fat?

Of course milkfat is also a source of choline, along with liver and egg yolks, which is essential to brain development.

But even this misses the point. Cholesterol is essential to brain development!

One of the first articles I added to my section on the functions of cholesterol was an article entitled “Learning, Your Memory, and Cholesterol.” It discusses the evidence uncovered eight years ago that cholesterol is the limiting factor for the formation of synapses, which are the connections between neurons that allow learning and memory to take place.

Lowering brain levels of cholesterol can be detrimental at any age beacause of this, but the consequences for children — whose brains are still developing at a much more rapid rate — could be much more dire.

No doubt, most researchers and medical doctors mean well and are honestly trying to help our children. But surely someone in these drug companies must know that cholesterol is necessary for brain development, and that cholesterol-lowering drugs reduce mental performance in adults. Surely they must know that if we raise our next generation of children on statins during the critical periods of brain development, we may raise a whole generation with compromised intelligence.

And if that’s the case, are they trying to dumb us down? Sometimes it seems like that’s the case.

Article written by Chris Masterjohn

corn kernelsThis week I’d like to bring your attention to three articles I came across on the web which illustrate the utter madness of mainstream medicine and nutrition.

The first article, “Beware of New Media Brainwashing About High Fructose Corn Syrup“, appeared on Mercola.com, a health advocacy site run by Dr. Joseph Mercola which I recommend. I agree with Dr. Mercola on most things, and even when we don’t agree the differences are relatively minor.

In his article Mercola warns consumers that The Corn Refiners Association is spending $20 to $30 million dollars on an advertising campaign to “rehabilitate” the reputation of high fructose corn syrup (HFCS), claiming that the product is “no worse for you than sugar.”

HFCS is now the #1 source of calories for children in the U.S., a staggering fact when research has clearly linked HFCS to obesity, diabetes, metabolic syndrome, high triglycerides, liver disease and more. On top of that, HFCS is almost always made with genetically modified corn.

Head on over to Mercola.com to read the rest of the article and learn why you and your children should be avoiding HFCS as much as possible. HFCS is found primarily in processed foods (in everything from hamburger buns to soda), so if you follow my general recommendation of eating a whole-foods diet you should have no trouble avoiding it.

The second article, “8-Year-Olds on Statins? A New Plan Quickly Bites Back“, was published in the New York Times on July 8. It describes new guidelines issued by the American Academy of Pediatrics recommending that statin drugs be prescribed to kids as young as 8 years old!

While some doctors applauded the idea (which is incomprehensible to me), others were “incredulous”. Why are they incredulous? Because there is absolutely no evidence suggesting that treating children with statins will prevent heart attacks or reduce mortality from heart disease. Furthermore, there are no data on the possible side effects from taking statins for 40 or 50 years. Since statins have caused cancer in several animal studies, there is no reason to assume that this is not a risk in humans – especially with such long-term use of the drugs.

If you’re not familiar with the dangers of statin drugs, I suggest you read my recent article “The Truth About Statin Drugs“. Not only are statins nowhere near as effective as claimed, they have serious adverse effects and risks – including death.

What’s more, statins have been neither studied nor approved for use with children. In other words, the American Pediatric Association wants to perform an uncontrolled experiment with statin drugs and our children. This is completely unacceptable in light of what we already know about these drugs.

This is yet another obvious example of how the massive conflicts of interest in the medical field, which I described in a previous article, cloud the judgment of otherwise well-meaning physicians and health organizations.

Head over to the New York Times to read the rest of the article.

The third article, “Popular Fish, Tilapia, Contains Potentially Dangerous Fatty Acid Combination” which appeared on ScienceDaily.com, revealed that farm-raised tilapia has very low levels of beneficial omega-3 fatty acids and, even worse, very high levels of omega-6 fatty acids.

This is particularly troublesome because tilapia has become one of the most highly consumed fish in the U.S. (mostly due to its low price), and that trend is expected to continue through 2010.

Researchers have found that tilapia has higher levels of omega-6 fatty acids than doughnuts. That’s scary.

The health risks of excessive amounts of omega-6 fatty acids in the diet are well established. In short, they are significant contributors to both inflammation and oxidative damage in the body. Inflammation and oxidative damage are major risk factors for heart disease, diabetes, cancer and many other diseases.

Wild-caught oily fish, on the other hand, contain a favorable ratio of omega-3 to omega-6 fatty acids and may actually protect against inflammation and oxidative damage?

So what’s the problem with tilapia, you ask? The problem is that they are raised on a “fish farm” where they are fed inexpensive corn-based feeds which contain short chain omega-6 fatty acids that the fish convert and store in their tissues. While this practice has kept the price of tilapia low, it has also transformed it into a toxic food.

Repeat after me: fish don’t eat corn. Fish don’t eat corn. Fish don’t eat corn.

(Cows don’t normally eat chicken parts, gummi bears and garbage, either; but they do in commercial feedlots where most of the meat in the U.S. is produced. I’ll save that for another day, though.)

What all of these articles share in common is 1) further evidence of the rampant conflicts of interest in our medical care system, 2) the complete lack of an objective, independent regulatory body that can protect consumers from the malfeasance of Big Pharma and Big Agrobusiness, 3) the general departure from common sense and traditional wisdom when it comes to health care and nutrition.

It’s absolute madness.

pills and bills Statins have been almost universally hailed as “wonder drugs” by medical authorities around the world. The market for statins was $26 billion in 2005, and sales for Lipitor alone reached $14 billion in 2006. Merck and Bristol Myers-Squib are actively seeking “over-the-counter” (OTC) status for their statin drugs. Statins are prescribed to men and women, children and the elderly, people with heart disease and people without heart disease.

In fact, these drugs have a reputation for being so safe and effective that one UK physician, John Reckless (I’m not kidding – that’s actually his name!) has suggested that we put statins in the water supply.

That’s a bold suggestion, of course, and it begs the question: are statins really as safe and cost effective as mainstream medical authorities claim? The unequivocal answer is no.

Statins don’t increase survival in healthy people

Statins have never been shown to be effective in reducing the risk of death in people with no history of heart disease. No study of statins on this “primary prevention population” has ever shown reduced mortality in healthy men and women with only an elevated serum cholesterol level and no known coronary heart disease. (CMAJ. 2005 Nov 8;173(10):1207; author reply 1210.) In fact, an analysis of large, controlled trials prior to 2000 found that long-term use of statins for primary prevention of CHD produced a 1% greater risk of death over 10 years compared to placebo

Statins don’t increase survival in women

Despite the fact that around half of the millions of statin prescriptions written each year are handed to female patients, these drugs show no overall mortality benefit regardless of whether they are used for primary prevention (women with no history of heart disease) or secondary prevention (women with pre-existing heart disease). In women without coronary heart disease (CHD), statins fail to lower both CHD and overall mortality, while in women with CHD, statins do lower CHD mortality but increase the risk of death from other causes, leaving overall mortality unchanged. (JAMA study)

Statins don’t increase survival in the elderly

The only statin study dealing exclusively with seniors, the PROSPER trial, found that pravastatin did reduce the incidence of coronary mortality (death from heart disease). However, this decrease was almost entirely negated by a corresponding increase in cancer deaths. As a result, overall mortality between the pravastatin and placebo groups after 3.2 years was nearly identical.

This is a highly significant finding since the rate of heart disease in 65-year old men is ten times higher than it is in 45-year old men. The vast majority of people who die from heart disease are over 65, and there is no evidence that statins are effective in this population.

Do statins work for anyone?

Among people with CHD or considered to be at high risk for CHD, the effect of statins on the incidence of CHD mortality ranges from virtually none (in the ALLHAT trial) to forty-six percent (the LIPS trial). The reduction in total mortality from all causes ranges from none (the ALLHAT trial) to twenty-nine percent (the 4S trial).

However, the use of statins in this population is not without considerable risk. Statins frequently produce muscle weakness, lethargy, liver dysfunction and cognitive disturbances ranging from confusion to transient amnesia. They have produced severe rhabdomyolysis that can lead to life-threatening kidney failure.

Aspirin just as effective as statins (and 20x cheaper!)

Perhaps the final nail in the coffin for statins is that a recent study in the British Medical Journal showed that aspirin is just as effective as statins for treating heart disease in secondary prevention populations – and 20 times more cost effective! Aspirin is also far safer than statins are, with fewer adverse effects, risks and complications.

The bottom line

  1. Statin drugs do not reduce the risk of death in 95% of the population, including healthy men with no pre-existing heart disease, women of any age, and the elderly.
  2. Statin drugs do reduce mortality for young and middle-aged men with pre-existing heart disease, but the benefit is small and not without significant adverse effects, risks and costs.
  3. Aspirin works just as well as statins do for preventing heart disease, and is 20 times more cost effective.

So what if you are at risk for heart disease and you’d prefer not to take a statin? Other than aspirin, there are many clinically proven ways to prevent heart disease involving simple adjustments to diet and lifestyle. In fact, the recent INTERHEART study which looked at the incidence of heart disease in 52 countries revealed that over 90% of heart disease is preventable by diet and lifestyle modifications.

I’ll discuss these natural methods of preventing heart disease in my next post. Stay tuned!

Recommended links

  • Dangers of statin drugs: what you haven’t been told about cholesterol-lowering drugs
  • The effect of statins is not due to cholesterol lowering

Bad Behavior has blocked 1411 access attempts in the last 7 days.